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A procedure suggested by Vvedensky for obtaining continuum equations as the coarse-grained limit of
discrete models is applied to the restricted solid-on-solid model with both adsorption and desorption. Using an
expansion of the master equation, discrete Langevin equations are derived; these agree quantitatively with
direct simulation of the model. From these, a continuum differential equation is derived, and the model is
found to exhibit either Edwards-Wilkinson or Kardar-Parisi-Zhang exponents, as expected from symmetry
arguments. The coefficients of the resulting continuum equation remain well-defined in the coarse-grained
limit.

DOI: 10.1103/PhysRevE.73.041605 PACS number�s�: 81.15.Aa

I. INTRODUCTION

Driven, nonequilibrium interfaces have received much at-
tention in recent years. Various models have been used to
describe such systems. �1,2�. These models may usually be
assigned to one of a small number of universality classes,
each characterized by a set of scaling exponents. To each
universality class corresponds a continuum Langevin equa-
tion; such an equation may therefore be identified for each
lattice model if the exponents are known, for example, from
kinetic Monte Carlo �KMC� simulations. This procedure,
however, faces difficulties when crossover effects are impor-
tant �3�. To overcome this, Vvedensky �4� has suggested us-
ing a combination of an expansion of the master equation
�5–7� and the dynamic renormalization group �DRG� �8,9� to
coarse-grain the resulting description, thereby directly ob-
taining a continuum Langevin equation in the large-scale,
long-time limit. This program is a particular realization of a
program suggested by Anderson �10�.

In this paper we implement this procedure for a restricted
solid-on-solid �RSOS� model with both adsorption and de-
sorption. The master equation is expanded to obtain a set of
discrete Langevin equations; these are then numerically inte-
grated and compared to direct KMC simulations of the
model, with which they are found to be in quantitative agree-
ment. In the up and down symmetric case, an ad hoc proce-
dure and the DRG both lead to the Edwards-Wilkinson �EW�
equation,

�

�t
��x,t� = �2

�2

�x2��x,t� + �D��x,t� , �1�

as the macroscopic description of the model; here, � is a
zero-average Gaussian noise field with unit variance. For the
asymmetric case, DRG arguments lead to the Kardar-Parisi-
Zhang �KPZ� equation,

�

�t
��x,t� = �2

�2

�x2��x,t� + �2� �

�x
��x,t��2

+ �D��x,t� ,

�2�

as the coarse-grained description. This is consistent with
symmetry arguments and simulations �11�. The coefficients
of the coarse-grained continuum equations remain well-
defined in the macroscopic limit.

II. THE MODEL

The model is a simple generalization of the RSOS model
introduced by Kim and Kosterlitz �11�, and a special case of
that introduced by Hinrichsen et al. �12�. It is described
�in one dimension for simplicity� by a vector h�t� of L time-
dependent, integer-valued heights hi�t�, i=1,2 , . . . ,N; time is
also a discrete variable. The dynamical evolution is given by
the following rules: At each time step, an integer 1� i�L is
randomly chosen; with probability p the height hi is in-
creased by 1, and with probability q attempt it is decreased
by 1, provided that the resulting configuration does not vio-
late �hi−hi±1��1. Finally, periodic boundary conditions are
imposed. The allowed transitions, together with the associ-
ated probabilities �equivalently, the rates� are shown in Fig.
1. The transition rate from configuration h to h+r is given
by

W�h;r� = 	
i

�
q��ri − 1����+hi���− �−hi�

+ p��ri + 1���− �+hi����−hi��Fi� , �3�

with Fi=� j�i��rj�, the discrete derivatives

�±hi = ± �hi±1 − hi� ,

and

��x� = 1, x 	 0

0, x 
 0,
� �4�

for integer (or zero) x. The temporal evolution of the prob-
ability density P�h , t� is given by the master equation*Electronic address: achilleas.lazarides@imperial.ac.uk
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�

�t
P�h,t� =� dLr�W�h − r;r�P�h − r,t� − W�h;r�P�h,t�� .

�5�

In Ref. �13�, the special case q=1, p=0 is studied, and the
KPZ equation derived as the coarse-grained description.
However, the treatment of Ref. �13� leads to ill-defined co-
efficients precisely in the coarse-grained limit. In particular,
the authors find the coarse-grained description to be Eq. �2�
with �2, �2, and D proportional to different powers of a pa-
rameter, a, which controls the degree of coarse-graining; in-
deed, their results are valid as a→0. Such a problem does
not arise in our approach.

III. A VARIANT OF THE VAN KAMPEN EXPANSION

An often-used method for deriving Fokker-Planck equa-
tions for stochastic processes is the van Kampen expansion
�5–7�. The method as described in �6,7� is not directly appli-
cable to systems such as the RSOS model because it requires
a small parameter, 1 /�, in which to expand. In effect, it
assumes the existence of a macroscopic law along with sto-
chastic corrections to it, the relative size of which is con-
trolled by the expansion parameter �6�. In stochastic growth
models, this is not the case; it is impossible to separate the
time evolution into deterministic and stochastic parts: the
stochastic evolution is all there is. A more extended discus-
sion of this point may be found in Refs. �14,15�, where it is
shown that Eq. �5� may nevertheless be approximated by a
Fokker-Planck equation, which corresponds to the Itô Lange-
vin equation

d

dt
hi = Ki

�1��h� + �Kij
�2��h�� j�t� , �6�

where summation over repeated indices is implied and the
jump moments are defined by

Ki1,. . .,n

�n� �h� =� drri1
¯ rin

W�h;r� .

Equation �6� is essentially a set of simultaneous coupled
Langevin equations. Obtaining a continuum version is con-
ceptually similar to the �inverse of the� method of lines used
to solve partial differential equations. However, in the case
of discrete interface models, the jump moments K�n� contain
nonanalytic step functions which necessitate a regularization
procedure. This is done in the next section.

IV. DISCRETE LANGEVIN EQUATIONS

To apply Eq. �6�, the first two jump moments are needed.
These can be calculated from W given by Eq. �3� and are

Ki
�1��h� = q���+hi���− �−hi� − p��− �+hi����−hi� �7a�

and

Ki,j
�2��h� = �q���+hi���− �−hi� + p��− �+hi����−hi���ij ,

�7b�

where �ij is a Kronecker delta.
Equations �7a� and �7b� are not completely specified by

the lattice transition rules of Sec. II, but must be extended to
noninteger values of the hi. Furthermore, in deriving Eq. �6�,
the implicit assumption that W�h ;r� is analytic in h was
made, which in turn implies that the extension of ��x� to
nonintegers must be differentiable. This continuation of the
K�n� to noninteger arguments is known as regularization
�4,5,16,17�. We choose the representation of � given by

��x� = lim
�→0+

���x� , �8�

where, following �4,16,17�,

���x� =
�

a
ln� exp��x + a�/�� + 1

exp�x/�� + 1
� . �9�

The parameter a is the value of x below which ��x�=0 and
must therefore satisfy 0
a
1 in order to agree with the
lattice rules; it is otherwise free at this stage. � is effectively
a “smoothing” parameter, and �� is an analytic function of x
at the origin for all ��0. More details may be found in �4�.

In some cases, such as the Wolf-Villain model analyzed in
�15�, the lattice rules can be used to infer the value of a.
Here, simple arguments �14� show that a=0 leads to a dis-
continuous �nonanalytic� dependence of K�1��h� on h; this is
against the spirit of the model, so a�0. Unfortunately, the
argument cannot fix the exact value; this must be determined
by comparing the results of numerical integration of Eq. �6�
to simulations of the lattice model. Accordingly, Fig. 2 shows
a plot of w against t for L=100 with q=1 and p=0; results
from a KMC simulation and numerical integration of the
Langevin equations for each of a=0.6, a=0.7 and a=0.8 are
presented. It is evident that a�0.7 gives a result that agrees
closely with the KMC simulation. To test this agreement in

FIG. 1. Allowed transitions and associated transition rates.

FIG. 2. Variation of the evolution of the interfacial width with
time for three values of a, as well as KMC simulation; q=1 and
p=0, L=100. Both KMC and stochastic integration results averaged
over 2000 runs.
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the case q= p=0.5, we simulate a system of size L=1000;
Fig. 3 shows the early-time behavior. It again shows that a
�0.7 gives the best agreement between KMC simulations
and the stochastic formulation.

In conclusion, the system of discrete Langevin equations
with the choice �0.7 gives quantitatively the same results as
the original model.

V. THE CONTINUUM LIMIT

The continuum �coarse-grained� limit of the symmetric
case q= p may be taken using a simple ad hoc method, which
is direct but physically opaque and cannot be extended to the
asymmetric case. The DRG is necessary to analyze the full
model; it is considerably more general and conceptually
clear, but correspondingly more complicated to carry out.
The analysis presented in this section confirms the results of
symmetry arguments and constitutes the final step in the
identification of the stochastic differential equation �SDE�
corresponding to the RSOS model.

A. Ad hoc approach

Using the regularization of Sec. IV, the step functions may
be expanded about x=0 as

���x� = 	
n=0



bn���xn. �10�

Replacing the set hi�t� by a function of a continuous argu-
ment x, ��x , t� �which coincides with hi�t� for x= i�, and ex-
panding the discrete derivatives transforms the discrete set of
SDEs of Eq. �6� into a �partial� stochastic differential equa-
tion for ��x , t�.

By using power counting arguments �see �14� for details�,
we find that the relevant terms in this equation are, at most,

��

�t
= �2

�2�

�x2 + �4
�4�

�x4 + �6
�6�

�x6 + �13
��

�x

�3�

�x3 + �2� ��

�x
�2

+ �13
�

�x
� ��

�x
�3

+ �22� �2�

�x2 �2

+ �D� , �11�

where � is Gaussian noise with unit variance and the coeffi-

cients may be found explicitly as functions of the bn. The
coefficients �2 ,�4 ,�6 ,�13, and D are proportional to q+ p,
while the rest are proportional to q− p; this is consistent with
arguments based on up and down reflection symmetry.

In the symmetric case q= p, the only surviving terms are
given by �2=12�4=360�6=b0b1, �13= �3b0b3+b1b2� /3, and
D=1. The coefficients bn may be found explicitly from Eq.
�9�. These satisfy the following inequality �19�:

bn��� �
An���
�n−1 , �12�

where An→const as �→0+.
A simple scaling approach would involve rescaling space,

time, and the field as x→�x, t→�zt, and �→���, respec-
tively, followed by taking the limit �→0+. Instead, following
�4,16�, we will take the two limits �→0 and �→0 together.
Setting �=��, with ��0 to be determined, the limit �→0+ is
well-defined only if z=2, �=1/2, and �=1/2. The space-
time scaling is diffusive �EW�, while the value of � has no
direct physical significance. At the limit, the only surviving
terms are the �2 term and the noise; all the others vanish. We
therefore conclude that the coarse-grained limit of the sym-
metric RSOS model is the EW equation �20�.

Unfortunately, this direct coarse-graining procedure can-
not be applied to the asymmetric case. In the next section,
both the symmetric and asymmetric version of the model are
studied using DRG arguments.

B. Dynamic renormalization group

An equation corresponding to the limit of Eq. �11� for
q= p has previously been analyzed by das Sarma and Kotlyar
�18�; however, the DRG flow equation for �13 is not derived
in Ref. �18�.

For this section, Eq. �11� will be generalized to d dimen-
sions in the obvious way. Defining Kd=Sd / �2��d,
Sd=2�d/2 /��d /2�, and g=�13D /�2

2, we find, to first order in
g �which plays the role of an effective coupling constant�,

d�2

dl
= �2�z − 2 +

1

2
gKd

d + 2

d
� , �13a�

d�13

dl
= �13�2� + z − 4 −

1

2
gKd

d2 + 6d + 20

d�d + 2� � , �13b�

dD

dl
= D�z − d − 2�� �13c�

�the nonrenormalization of D is a well-known consequence
of the fact that the deterministic part of the equation is con-
servative�. The flow equation for g is given by

dg

dl
= − g�d + g

Kd

2d�d + 2�
�3d2 + 14d + 28�� . �14�

For any positive g�l=0� �which is the case here �14��,
g=0 is an attractive fixed point �21�. This fixed point

FIG. 3. Early-time behavior of the width for L=1000 and q
= p=0.5 Both KMC and stochastic integration results averaged over
1000 runs.
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corresponds to z=2 and �= �2−d� /2, with �13=0, that is, it
is the fixed point of the EW universality class, in agreement
with the ad hoc approach of the previous section �as well as
symmetry arguments and computer simulations�.

Application of the full machinery of the DRG to Eq. �11�

is unnecessary because definite conclusions may be reached
by inspection of the equation. In terms of the Fourier
transform of ��x , t�, which we denote by the same
symbol ��k ,��, Eq. �11� �generalized to d dimensions�
becomes

G0�k,����k� = ��k,�� + �
q,�

M2�q,k − q���q���k − q� + �
q,q��,��

�M3�k,k − q − q�,q,q����q���q����k − q − q��� ,

�15�

where the argument � has been suppressed for �, the bare
response function is

G0�k,�� = �2k2 − �4k4 + �6k6 − i� ,

and the two vertices are

M3�k1,k2,k3,k4� = �13�k1 · k4��k2 · k3� �16�

and

M2�k1,k2� = − �2�k1 · k2� + �22�k1�2�k2�2 +
1

2
�13�k1 · k2�

���k1�2 + �k2�2� . �17�

In the long-wavelength limit k→0 the 2-vertex of Eq. �17�
will be dominated by the �2 �KPZ� term, with the �ij terms
playing the role of higher-order corrections. Similarly, the
3-vertex is of higher order than the KPZ term; in addition, it
has been shown to be irrelevant previously. Therefore, the
KPZ term �2 determines the universality class of the model.

Since �2 ,�ij � �q− p�, if q= p then M2=0 initially. If only
vertices with an odd number of legs are present in the bare
�unrenormalized� equation, then vertices with an even num-
ber of vertices cannot be produced under renormalization.
Therefore, if q= p the KPZ term is not present and the
coarse-grained dynamics of the system is described by the
EW equation. If q�p, the dynamics is described by the KPZ
equation. This result is consistent with symmetry arguments
and simulation results �14�.

VI. SUMMARY

We have implemented a procedure suggested by Vveden-
sky �and in more general terms by Anderson �10�� to obtain
macroscopic equations from microscopic models.

Discrete Langevin equations are first derived and numeri-
cally integrated; they are found to be in quantitative agree-
ment with KMC simulations of the underlying model. Next,
these equations are expanded, leading to a continuum Lange-
vin equation, from which it is shown that the coarse-grained
description of the model is the KPZ equation with the coef-
ficient of the nonlinear term �2 vanishing in the symmetric
case, so that the EW equation is obtained. The coefficients
appearing in the equation are well-defined in the coarse-
grained limit.

The advantage of this procedure over the identification of
the universality class by direct determination of the expo-
nents from simulations is that slow convergence to the
asymptotic regime is not a problem. In addition, the DRG
approach allows, in principle, investigation of crossover ef-
fects �although this has not been pursued here�. Application
of this procedure to other models would be a fruitful area for
the future.
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